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Interfacial mode interactions in horizontal 
gas-liquid flows 
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The behaviour of shear-generated interfacial waves in a cocurrent gas-liquid flow in 
a small rectangular channel is studied experimentally at conditions close to neutral 
stability. It is found that the linearly most unstable mode, which typically has a 
frequency of 8-10 Hz and a wavelength 1 4  cm, grows initially - followed immedi- 
ately by the first overtone. Measurements of the bicoherence spectrum indicate 
that the overtone and fundamental are coherent in phase, which suggests that energy 
is transferred from the fundamental to the linearly stable first overtone. This energy 
transfer mechanism can stabilize the system, as evidenced by data, which shows that 
the first mode can saturate with a wave slope small as as 0.005. Theory based on 
weakly nonlinear mode-interaction equations suggests that this steady state should 
be stable at conditions close to neutral stability where only overtone modes are 
present. However, under more severe conditions, where the amplitude of the 
fundamental mode becomes sufficiently large, a subharmonic mode may be excited. 
The generation of the subharmonic, when it is linearly stable with respect to the flat 
film base state, can be interpreted as a linear instability of the steady state 
containing the fundamental and overtones. Modes that are sidebands (with 
wavenumbers = k&Sk)  to the main peak may also occur. These can participate in 
interactions with low-frequency modes (i.e. Slc) and thereby transfer energy to 
frequencies much below the fundamental. It is expected that all of these interactions 
play important roles in determining the wave spectrum of conditions far away from 
neutral stability. 

1. Introduction 
Stratified gas-liquid flows are found in a wide variety of industrial process situations 
(e.g. hydrocarbon transportation pipelines, heat exchange devices) as well as in the 
environment when the wind blows over a water surface. If the degree of gas shear on 
the liquid is sufficiently large, interfacial waves will be excited by a mechanism which 
was first analysed by Miles (1957) where energy is transferred from the gas flow when 
the pressure variation over a wave is shifted from the exact antiphase location where 
it would be if the flow were inviscid. The pressure variation phase angle is a complex 
function of the gas velocity profile, wavelength, fluid properties and the level of gas 
phase turbulence. If, as typically happens, the pressure minimum is shifted to the 
leeward side of the crest of a downwind-travelling wave, the component of pressure 
in phase with the wave slope excites a disturbance by reinforcing the motion of fluid 
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particles associated with the wave mode. The initially excited waves are periodic, 
dynamic waves with wavelengths determined by a balance between energy input 
from the gas flow and viscous dissipation, which varies as -vc2k2 (where v is the 
kinematic viscosity, c is wave speed and k is wavenumber). For the air-water system, 
this balance produces initial waves with wavelengths of 1 4  cm for both infinitely 
deep situations (Gastel, Janssen & Komen 1985) and liquids as shallow as 0.5 cm in 
small enclosed channels (Hanratty 1983). Although a completely general linear 
stability study which includes the significant effect of turbulence in the gas and is 
valid for all wavenumbers is lacking, the processes which control linear growth 
process seem to be well understood as evidenced by the reasonably good agreement 
between measured onset conditions, wavelengths, speeds and growth rates (e.g. small 
channels : Cohen & Hanratty, 1965 ; Craik 1966 ; Hanratty 1983 ; Blennerhassett & 
Smith 1987 ; deep layers : Miles 1957 ; Benjamin 1959 ; Valenzuela 1976; Kawai 1979 ; 
Gastel et al. 1985). 

I n  contrast, the understanding of nonlinear processes, which typically act to arrest 
this growth and can cause saturation of amplitudes, is not nearly so advanced. 
McGoldrick (1965) discovered that waves in the capillary-gravity range undergo 
three-wave quadratic interactions if the appropriate resonant conditions are met. 
Subsequent experiments (McGoldrick 1970; Bannerjee & Korpel 1982 ; Henderson & 
Hammack 1987) have confirmed predictions of McGoldrick and also Simmons (1969). 
Kim & Hanratty (1971) derived mode-interaction equations for colinear overtone 
modes which included non-resonant conditions. Their experiments confirmed the 
basic predictions of the equations which suggest that, depending upon the liquid 
depth and the wavelength of the fundamental, a number of (non-resonant) overtone 
modes can be generated. Another prediction is that energy transfer is oscillatory for 
non-resonant cases. 

One avenue of study of shear-generated wave fields is to  develop equations to 
describe the steady or transient shape of the wave spectrum. Valenzuela & Laing 
(1972) used a perturbation approach to develop an equation to describe the energy 
flux in a wind-generated Gaussian wave field. Phillips (1985) employed a wave-action 
balance equation, which includes energy input, transfer and dissipation (primarily 
by wave breaking) to  describe the equilibrium range of ocean waves. Lleonart & 
Blackman (1980) combined the idea of a saturated equilibrium range with 
dimensional arguments to derive an equation to  predict the high-frequency portion 
of the wave spectrum for a cocurrent gas-liquid flow in a small channel. McCready 
(1986) used a dynamic energy balance, with energy transfer caused by mode- 
interactions, to  develop an expression for the high-frequency part of the spectrum in 
a gas-liquid flow. However, these last two expressions make no predictions about the 
amplitude of the largest waves, which for enclosed flows exert the greatest influence 
on the pressure drop and other properties. Bruno & McCready (1989) provide a 
partial remedy for this situation by including energy input into the wave spectrum 
energy balance. Their theory provides a reasonable interpretation of experimental 
data but requires an arbitrary constant that has to be fit t o  experimental data. 

Interest in the study of the detailed behaviour of shear-generated waves was 
spurred by experiments by Choi (1977) who observed period doubling, where the 
dominant frequency changes from about 15 Hz to about 7.5 Hz, for interfacial waves 
in a cocurrent gas-liquid flow. An explanation for this phenomena was suggested by 
Chen & Saffman (1979) who determined that a bifurcation in the permanent inviscid 
wave form can occur if the amplitude becomes sufficiently large ; their results are in 
qualitative agreement with the data of Choi (1977). Bontozoglou & Hanratty (1990) 
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show that this period-doubling bifurcation depends significantly on the speed of the 
gas flow and were able to explain Choi’s data more closely quantitatively than Chen 
& Saffman (1979). Bontozoglou & Hanratty (1990) suggest that the observed period 
doubling is associated with a Kelvin-Helmholtz instability of finite-amplitude 
waves. A somewhat different approach to this problem has been taken by Janssen 
(1986). Instead of constructing the Lagrangian for the inviscid equations, he 
performed a weakly nonlinear, weakly viscous expansion of the entire Navier-Stokes 
equations. In his formulation, wave growth of the original fundamental is included. 
The resulting equations describe the evolution of two weakly nonlinear wave modes, 
the fundamental and the subharmonic. These equations suggest that the period 
doubling occurs through quadratic interactions between the fundamental and sub- 
harmonic (the mechanism is presumably phase-dependent constructive reinforcement 
of the orbital motions associations with each mode) and provide some insight into the 
timescale of the period-doubling process. His result, that the fundamental must 
reach a threshold amplitude before significant energy transfer occurs, agrees with the 
predicted bifurcation for sufficiently large amplitude found by Chen & Saffman 
(1979) and Bontozoglou & Hanratty (1990). A second paper, Janssen (1987), uses an 
energy formulation to derive equations for an arbitrary number of modes ; integration 
of these equations for 50 modes demonstrates the flow of energy in the entire 
spectrum. Gastel (1987) uses a slightly different formalism to develop equations for 
the initial development of the tlpee-dimensional spectrum. Recent theoretical work 
by Cheng & Chang (1990, 1992) suggest that shear-generated waves may be unstable 
to sideband disturbances and subharmonic mode generation, depending upon the 
conditions. Their analyses apply to any system for which mode-interaction 
equations are available (or can be derived). These predictions have not yet been 
verified experimentally. 

In this study, the wave field of a cocurrent gas-liquid flow in a rectangular channel 
at conditions close to neutral stability is examined. The experiments were done in an 
attempt to determine the generic behaviour that occurs on sheared liquid layers just 
above neutral stability. It was found that the liquid depth played a profound role in 
determining the types of interactions that were seen, while the gas velocity was less 
important. Consequently, experiments were done at varying liquid flow rates with 
the gas flow adjusted to a value just sufficient to produce measurable waves. 
Initially, a two-dimensional fundamental wave, which corresponds closely to the 
prediction of the fastest growing mode from linear stability, was observed along with 
one or more (linearly stable) overtones. Measurements of bicoherence spectra 
demonstrated that the fundamental and overtones have coherent phases and are 
nonlinearly coupled. Stabilization provided by transfer of energy to overtones, which 
can dissipate it,  causes the fundamental to saturate at a small amplitude-to- 
wavelength ratio. This suggests that weakly nonlinear theories may provide good 
predictions of behaviour. The data show that sideband interactions and/or 
subharmonic generation may also occur a t  conditions close to neutral stability. To 
aid in interpretation of these measurements, a set of weakly nonlinear mode- 
interaction equations that include the effect of gas shear and finite depth are derived. 

2. Theory 
2.1. Linear d e  evolution 

Experiments presented below will demonstrate that, close to neutral stability, 
interfacial waves exist as identifiable modes than may saturate with small wave 
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slopes (amplitude to wavelength ratios) and may interact to form overtones, 
subharmonics and sidebands. If we first consider the linear stability problem of a gas 
flowing over a liquid, the flow will be governed by OrrSommerfeld equations for the 
gas and liquid, and boundary conditions which are given (for example) by Valenzuela 
1976; Kawai 1979 or Gastel et al. 1985. In the present situation, where the flow is 
confined to a channel, no-slip boundary conditions for the velocities a t  the wall will 
be appropriate. For our channel flows, the liquid will be laminar. However, the gas 
will be turbulent which prevents exact calculation of even the average profile 
(although it could certainly be predicted with the aid of a turbulence model). In 
addition, the OrrSommerfeld equation for the gas should contain additional terms 
that represent turbulent contributions to the Reynolds stress as discussed by 
Thorsness, Morrisroe & Hanratty (1978). 

To determine the linear growthldecay behaviour of waves, it is common to assume 
that all dependent variables are periodic in x, the flow direction, (variation in the 
transverse direction could be included as well) and may travel and grow or decay 
with time. This leads to fluctuations associated with a mode of the form 

&, t ,  y) $w exp ( ik(x- -c t ) ) ,  ( 1 )  

where t is time, y is the direction normal to the interface, i = 1/ - 1,  k is the (real) 
wavenumber and c is the complex wave speed. If Im [c] > 0, wave modes are 
predicted to grow exponentially in time. Various forms of the temporal stability 
problem have been solved analytically for long waves (small k) by Craik (1966) and 
Blennerhassett (1980), for large k by Cohen & Hanratty (1965), Gastel et al. (1985), 
and Blennerhassett & Smith (1987). Numerical solutions have been obtained by 
Valenzuela (1976), Kawai (1979) and Blennerhassett (1980). 

For the weakly nonlinear problem, which will be considered next, evolution 
equations for the amplitudes of the wave modes will be derived. Cases considered will 
be ones when the wave growth rate is sufficiently small that the timescale for vari- 
ation in the amplitude caused by growth or decay is long compared to a wave period. 
For conditions where the liquid is initially smooth and waves form with distance 
(typical of an open flow where there is no feedback of exit conditions back to the 
inlet), it is possible that both the flow field and the waves are essentially stable in 
time. Under these conditions, as discussed by Huerre & Monkewitz (1985) or Huerre 
(1987), the flow is convectively rather than absolutely unstable and it is more 
appropriate to consider waves which grow spatially. However, because the present 
study is confined to conditions where the spatial growth rate is small compared to the 
wavenumber, spatial evolution can be related to temporal evolution using the group 
velocity (Gaster 1962). Our present interest is to develop equations capable of 
describing the qualitative behaviour which is observed among weakly nonlinear 
wave modes. To keep the analysis as clear as possible, only temporal evolution will 
be considered and flow conditions will be confined to the vicinity of the neutral 
stability point. 

2.2 .  Temporal linear stability 
The linear behaviour of this system will be described by temporarily varying modes 
with the liquid phase described by an OrrSommerfeld equation and the effect of the 
gas phase entering through boundary conditions as was suggested by Cohen & 
Hanratty (1965) and Craik (1966). The parameters that describe pressure and shear 
stress variations of the gas on the liquid will be obtained from relations developed for 
turbulent flows over solid wavy surfaces as suggested by Hanratty (1983). Hanratty’s 
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(1983) results, as well as recent experiments by Prokopiou, McCready & Chang (1992) 
indicate that this formulation gives reasonably good predictions of linear and weakly 
nonlinear behaviour for waves close to neutral stability. 

The governing equations and boundary conditions for the linear stability problem 
are listed in the Appendix. Our interest is the region very close to the neutral 
stability point where the gas-phase stress variation parameters are of order l/R,. 
The liquid Reynolds number, R,, is defined as uhlv,, where u is the average liquid 
velocity, h is the average liquid depth and vL is the liquid kinematic viscosity. Both 
R, and khR, will be required to be large compared to unity. Under these conditions 
the wave velocity to leading order in khR, is shown by Cohen & Hanratty (1965) to 
be 

cE = Re [c[k]] = Uo-2kcoth 4 [hk]+[(2kcoth u; [hkl)(+coth [hk] (kT+!)r,  (2) 

where uo is the interfacial velocity, ui is the interfacial liquid velocity gradient, T is 
the ratio of the coefficient of surface tension to liquid density and g is the acceleration 
due to gravity. The linear growth rate, kc, = kIm[c[k]], for IcI 4 lcRl is given by 

kcI = u' )--4kv,u; 
k(cR - uO) 

In  (3), p L  is liquid density, @I is the component of the interfacial pressure in phase 
with the wave slope and fR is the component of the interfacial shear stress in phase 
with the wave height. It can be seen that because kh is O(l ) ,  khc,/u, will be (and is 
confined to) O(Ril) .  

The waves that occur in small flow systems, particularly when the liquid viscosity 
is O(10 cP), have wavenumbers of O(1) which, for R, of interest here, is below the 
accurate range of (3), but still too large for the boundary-layer theory of Jurman &, 
McCready (1989). This limitation could be overcome by a complete numerical 
solution of the eigenvalue problem for all wavenumbers or, as will be done here, by 
interpolation of growth rate and speed between the two available theories. Figure 1 
shows a typical calculation of wave speed and growth rate close to neutral stability 
for conditions used in one of the experiments presented below. It is seen that little 
uncertainty arises when the wave speed is interpolated. The potential error is much 
larger for the growth rates. However, in the absence of a more elaborate analysis, the 
interpolated values will be used to interpret the experiments. It is useful to note that 
wave speed varies only by about 10 '30 between k = 1 4  indicating the waves are only 
slightly dispersive. 

2.3. Weakly nonlinear m d e  equations 
The existence of experimentally observed steady waves indicates that the rate of 
energy transfer from unstable to stable modes is balanced by the rate of linear 
growth. Furthermore, these steady states often occur when the wave slope ia in the 
range of 0.01. Consequently, it should be possible to develop a weakly nonlinear 
formulation to describe the balance between linear growth/decay processes and 
nonlinear energy transfer. Several possible ways of ordering of terms in the 
derivation are possible -but none seem to be wholly satisfactory if a completely 
analytical formulation is desired. However, if R, is large enough for viscous effects 
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FIGURE 1. Predicted linear stability behaviour for conditions close to neutral stability : 
h = 0.651cm, v* = 0.54 cm/s, R ,  = 70, R,  = 4000, Uair = 3 m/s, ,uL = 9.5 cP. -, Deep layer; 
. . . . . . , boundary layer; ---, interpolated. 

to be confined to  thin boundary layers near the interface and bottom wall, if the 
growth rate and wave speed dispersion are O ( l / R L )  and if the wave slopes of 
quadratically interacting waves are O(u,/(hwR,), where o is circular frequency, then 
Janssen’s (1986) formulation can be adapted to our system. In  our case, the liquid 
has finite depth and the modes will be assumed not exactly resonant so that a linear 
dispersion term will arise. It is noted that Kim & Hanratty (1971) have demonstrated 
significant energy transfer between non-resonant waves. If the flow is inviscid, non- 
resonant energy transfer will be oscillatory. However, in the presence of viscosity 
continuous transfer from unstable to stable modes is possible. 

An outline, which closely follows Janssen’s (1986) analysis of the simplification of 
the NavierStokes equations and boundary conditions into a set of mode-interaction 
equations is given in the Appendix. For the reasons mentioned above, only temporal 
evolution is considered and the resulting equations are quite similar to the Fourier- 
transformed NavierStokes equations derived by Qian (1983) for the modal 
interactions of turbulence. The resulting equations are 

1-1 

Az[ t ]  = (iL, + ZEc,[ZL]) A ,  - i*2k ( 5 pjl, + &/1 A j )  3 (4) (2z*KZ-uh) j-2+1 j-1 
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where A ,  represents the complex wave amplitudes (a2 = 4 A , A r ,  where a is 
amplitude), k is the wavenumber of the fundamental, the dot represents a derivative 
with respect to time, 52 = w-kuo,  and TZ is the total number of included modes. The 
linear (temporal) growth coefficients, Ikc,[lk], can be obtained from ( 2 )  (or a more 
exact calculation). Additional terms are given by 

(12K, 52, + 1.6 52 - Igk - 13Tk3) 
L, = 9 ( 5 4  

K ,  = coth [Zkh], (5b) 

P,, = l( l( i-  I )  K ,  K,-l +jZK, K3+j( i -  I )  K ,  K,-, - (j2 - l ( j -Z ) ) ) ,  ( 5 c )  

(2152K, - u;) 

where S[Z - 2j] = 1 if Z- 2j = 0 otherwise 6[1- 2j] = 0.  The L, term accounts for the 
degree of mismatch in the speeds between the fundamental and each of the free 
modes and is identically 0 for 1 = 1.  These equations reduce to those of Kim & 
Hanratty (1971) if the uo and ub are zero and to Janssen’s (1986) in the limit of small 
interfacial shear, if the depth is extended to infinity and only two modes considered. 
It may appear that  ( 4 )  could be used to obtain an arbitrarily large number of modes, 
to enable coverage of all possible wavenumbers if the fundamental is taken to be 
small. However, it must be emphasized that ( 4 )  will only be strictly valid if the 
dispersion and wave damping/growth rates are O( l/(khR,)) and if viscous effects are 
important in the interaction coefficients. 

Experiments a t  conditions close to neutral stability will demonstrate that 
typically a fundamental mode, which corresponds to the linearly most unstable 
mode, will be formed followed immediately by the first overtone, which is linearly 
stable and can provide stabilization to produce a steady state. If we consider two 
modes, the fundamental and first overtone, of (4) we get 

with 

A, = d,A,-iP,A,A:, 

A, = (iL,+d,)A,-i&,A~, 

Q2k Q2k P -  p ~ 1 3  Q 2  = 4QK, - u; Q129 ’ - 252K1 - ub 

and d ,  = lkc,[lk].  This reduction in the number of modes can be justified either by 
noting that, close to neutral stability, modes higher than the first overtone are 
damped strongly enough that their wave slopes are very small (the experiments 
provide confirmation of this) or by doing an extended centre manifold projection 
(Wiggins 1990; Guckenheimer & Holmes 1983; Cheng & Chang 1990, 1992) of the 
system, which amounts to expressing all modes higher than the second as nonlinear 
powers of A1,A:,At  and A,. The result of this transformation is (6) plus additional 
cubic terms. These cubic terms, which are a projection of the quadratic interactions 
of the fundamental and overtone with higher modes, are then neglected relative to 
quadratic terms because the magnitudes of A,,A:,A: and A ,  are found 
(experimentally) to be small compared with unity. 

Perhaps the most important feature of the mode system is apparent in (6). The 
second mode contains the term &,A:. Because of this, energy is fed into the second 
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mode as soon as the first mode grows to a significant size. Consequently, the second 
mode will always exist (i.e. be greater than exponentially small) whenever the first 
mode is unstable. If the growth coefficient for the second mode is negative and 
sufficiently large in magnitude, then it is possible for the two-mode system to be 
stable with a net transfer of energy from the first mode to the second mode occurring. 
To see this, we first write (6) in terms of purely real quantities which gives three 

where $ = yz-2yl, A, = i b ,  exp [ikx-wt], y, = cos-' [2 Re [A,]/b,], and Re [A,] = 
i(A,+A:). It is convenient to simplify these equations further by absorbing the 
nonlinear coefficients, which do not change the qualitative behaviour of the system, 
into the amplitudes and by making the variable transformations, 

This results in the equations 

where r= -d,/d, and A = -L,/d,. With these definitions, r is zero a t  neutral 
stability and is positive above neutral stability if d, > 0 and d, < 0, which is the only 
case considered here. The parameter A is zero a t  resonance and can be either positive 
or negative. It will be seen below that its sign has no effect because A appears to the 
second power in all important results. 

Algebraic manipulation of (9) is facilitated by use of a transformation of the kind 
suggested by Vyshkind & Rabinovich (1976) : X = a2[l] cos [$I, Y = a,[[] sin [$I, and 
2 = al[lJ2. Doing this, (9) become 

(10) 

These equations differ in several important aspects from the superficially similar 
equations for interactions of modes in a plasma studied by Wersinger, Finn & Ot t  
(1980) and Hughes & Proctor (1990). Consequently, it is worthwhile to examine their 
behaviour. 

Our first interest is the steady state of this system. Letting the derivatives be zero 
we find a non-trivial steady state a t  

A 2 r  
(1-2q2 

X,=- A r  
1 - 2 r  

yo = -r, z, = r+ 
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which gives 

(12 a-c) 

If the degree of mismatch is small, a, - I'i which means that the unscaled amplitude 
b, varies as (d ,  d,/(P, &,))+ or (roughly) ( d ,  d , ) i / ( d ) .  This indicates that amplitudes 
are increased by a greater growth rate and diminished by a faster interaction rate 
(which increases with wavenumber and frequency). Note that the presence of d, in 
the numerator occurs because as dz increases, a, decreases, which limits the rate at 
which energy can be removed from the first mode. The effect can be seen by reference 
to (9a, b) .  When g5 x -in, energy transfer is monotonic from the fundamental to the 
first overtone and, consequently, increases in a,[[] actually act to reduce the 
magnitude of a,[fl. This suggests a nonlinear means for wave damping. To 
investigate the physical effect of the frequency mismatch parameter, A ,  which 
controls the efficiency of nonlinear transfer, we expand (12c) around d = 0, 

+0(1Al7), 4 =  -Ln+-- I 4  1413 + 

1-21' 3(1-2Q3 5(1-206 

and also large A ,  
1-21' (1 -243  (1-2175 

- -O(lAl-'). 
31413 514~ 

$=-- + 
lAl 

The phase angle is -in in the event of no mismatch. When this value of $ is placed 
into (7a )  and ( 7 b ) ,  energy transfer from the fundamental to the first overtone is 
maximized because sin ( -in) = - 1. When A is large, 4 x 0 and the efficiency of 
energy transfer from the fundamental to the overtone is greatly reduced. We see 
from (12a) and (12b), as d increases from 0, the amplitudes of both modes are 
increased - consistent with the idea that because energy transfer is no longer as 
efficient, larger amplitudes are required to stabilize the system. It is interesting to 
note that the ratio of the amplitudes, which is given by a2/al = r; does not depend 
on A .  

To check the stability of the steady state to infinitesimal perturbations in 
amplitude or phase (which would be expected to be present in a real flow), (10) are 
relinearized about X, + ax, Yo + 89, 2, + 62, giving the matrix that governs stability : 

- 1 + 2 r  

- 1 + 2 r  
A ( l + 2 r )  (- 0 

A 
- 1 + 2 r  

-1 

2I'( 1 + A' - 4r+ 4P) 
(-1+2I72 

-:) 0 

The three eigenvalues of (14) govern the stability of the steady state. Two of the 
eigenvalues are complex conjugates with real parts that are always negative and 
consequently do not contribute to instability. The third, which is always real, is 
plotted as a function of r for various A in figure 2. It is seen that the steady state 
(12) is stable provided that r < 0.5. If r > 0.5, then the steady state is unstable and 
it is expected that the amplitudes become unbounded. Numerical integrations of (4) 
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r 

FIGURE 2. Eigenvalue governing stability of (14) for different values of frequency mismatch 
parameter, A .  

exhibit this behaviour if only two modes are used. (However, if additional overtone 
modes are added, the system can still be stabilized.) The frequency mismatch 
parameter, A ,  does not change the system from stable to  unstable but i t  does affect 
the rate a t  which i t  may approach stability through the magnitude of the eigenvalues 
in figure 2. It can be seen from the centre manifold reduction of (lo), 

that the system bifurcates transcritically as r crosses 0. A transcritical bifurcation 
is consistent with the steady-state stability observed by the values of the eigenvalues. 
Consequently, in our system we expect that sufficiently close to neutral stability (i.e. 
f < i), the system will evolve into a stable steady state which consists of a 
fundamental and first overtone. Higher overtones will remain quite small. For more 
severe cases, when r is greater than a, the amplitudes of the fundamental and first 
overtone will grow and more (linearly stable) overtones will be magnified to finite 
values capable of dissipating a sufficient amount of energy. However, the system is 
expected to remain stable by the same energy transfer mechanism until an instability 
which involves modes other than overtones (e.g. sidebands or subharmonics) 
becomes important. 

Even though the equations studied by Wersinger et al. (1980) or Hughes & Proctor 
(1990) appear similar to (6), very different behaviour is observed. Their equations 
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arise from a system essentially like (6) but with d ,  > 0 and d ,  < 0 so that the overtone 
is excited and transfer to the subharmonic provides the only means of stabilization. 
In their case, the roles of the nonlinear terms are reversed and the mismatch 
parameter plays an essential role in determining the stability of the finite-amplitude 
steady state. For their system, the steady state loses stability through a Hopf 
bifurcation and various types (e.g. single and multiple period oscillations and chaos) 
of bounded time-varying behaviour are observed as r is varied. This contrasts with 
the present case, where the behaviour of the steady state, (l l) ,  is given by an 
equation of the form (again by use of centre manifold reduction) 

$ -  ( - 1 + 2 0 5 + i ~ ~ ,  (16) 

where A is real and 3 is 2 scaled by the matrix of eigenvectors of (14). Consequently, 
stability is lost as r increases across 0.5 by a simple bifurcation and the nonlinear 
term provides no stabilization. Therefore, if r > 0.5, the amplitudes always diverge 
to infinity. As mentioned above, for the complete system (4), as r increases to 0.5, 
additional overtone modes that act to stabilize the system will be generated. 
Consequently, (16) exceeds the limit of realistic physical application of the two-mode 
model, (6), but provides a basis for comparison with the results of Wersinger et al. 
(1980) or Hughes & Proctor (1990). 

2.4. Subharmonic instability 
Data shown below show a subharmonic peak for certain experimental situations. It 
is of interest to examine the question of subharmonic stability as predicted by (4). 
Cheng & Chang (1992) demonstrate that subharmonic instability is governed by the 
linear instability of the subharmonic mode with respect to the steady state which 
occurs between the fundamental and its overtones. In terms of the notation used in 
(6), to leading order in wave slope, the matrix that determines linear stability of the 
subharmonic becomes 

d;+iL; P;A1 ) 
(P;A:  a;-&; ' 

where the subscript t denotes the first subharmonic. For the system to be stable, the 
trace of (17) must be negative, which is the same as requiring the growth rate of the 
subharmonic to be negative. Even if the growth rate is negative, the subharmonic is 
still predicted to grow if the real part of one of the eigenvalues of (17) becomes 
positive. This condition occurs if 

(18) 

which simply says that the subharmonic mode is predicted to grow if energy fed from 
the fundamental exceeds the rate at which it can be linearly dissipated. Equation 
(18) demonstrates that the amplitude of the fundamental plays an important role in 
this instability. If A,A: becomes large enough, the subharmonic will almost 
certainly form because d; and Lt are generally no larger than O(1) and Pi = O(l0) .  It 
is also worth pointing out that the magnitude of mismatch L; affects the conditions 
of instability, which does not happen for either the onset of waves (first positive 
eigenvalues of (10)) or the point at which the two-mode steady state becomes 
unstable (as given by the eigenvalues in figure 2). For the present work, the 
prediction of (18) can be tested by using calculated coefficients along with measured 
amplitudes of the fundamental. 

(d# < (PQ2A,A: - (L;)', 
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2.5. Sideband formation 
Another instability which may be present in linearly unstable dissipative systems 
and is observed in the data presented here is the 'sideband' instability which has 
been studied by numerous investigators including Eckhaus (1965), Benjamin & Feir 
(1967), Lange & Newel1 (1974), Lin (1974) and Stuart & DiPrima (1978). Sidebands 
are observed to be peaks located at +_6k (where 6 is small) from the main peak at k. 
A recent paper by Cheng & Chang (1990) (their equation (52) )  provides a criterion 
which, if applied to (4), gives 

where cI [k ]  and L[k]  are continuous and k, refers to the wavenumber at the peak of 
the growth curve. Note that the effects of low-wavenumber modes (e.g. Sk, 2Sk) which 
may participate in the interactions are not included in (19) because (4) are not 
expected to be valid for such small k. In (19), the first term can cause instability if 
the fundamental wavenumber does not lie exactly at  the peak in the growth curve. 
This instability can be enhanced by speed dispersion through L,. Stabilization is 
provided by the second term of (19) which contains the curvature of the growth 
curve. 

3. Experiments 
3.1. Flow system 

The experiments presented here were done in a horizontal, rectangular flow channel 
with dimensions 30cm wide, 2.54 em high and 9 m long. (The flow system is 
described more completely by Bruno & McCready 1988, 1989; Bruno 1988 and 
Jurman 1990). Glycerin-water solutions in the viscosity range 8-20 CP were used as 
the liquid. The high aspect ratio of the channel eliminates secondary flow patterns 
and minimizes sidewall effects on the wave field. The rectangular geometry provides 
(as far as possible) uniform film and wave properties which aid comparison with 
theoretical results. 

3.2, Wave measurements 
Instantaneous film height is measured using parallel wire conductance probes. 
Their construction is discussed in detail by Miya, Woodmansee & Hanratty (1971) ; 
McCready (1986) and Bruno (1988). Each probe consists of two parallel 0.13 mm 
diameter wires spaced 2 mm apart which extend vertically through the channel, 
perpendicular to the direction of flow. An input AC voltage is supplied to one of the 
two wires in the form of a 30 kHz sine wave with a voltage of about 0.2 V. The signal 
is conducted through the liquid to the second wire, where a custom-design 
amplifier/converter circuit measures the conducting current (which is directly 
proportional to liquid layer thickness) and transforms it into a continuous analog 
output which is suitable for sampling by a microcomputer. A complete diagram of 
this circuit, which worked significantly better than previous designs, is given in 
Jurman (1990). The analog to digital conversion rate is 200 samples/s which is 
appropriate for the conditions studied here where no significant wave frequencies 
greater than about 50 Hz were observed. 
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Wave speeds were measured using two parallel wire conductance probes, displaced 
by a small distance in the flow direction. The frequency resolution of the probe is 
determined by the separation distance. Larger separation distances are required to 
detect and track the longest-wavelength disturbances, while the highest frequency is 
effectively determined by the wave whose length equals the separation distance. 
Therefore, a larger separation distance, r ,  for the probe increases its ability to resolve 
the lower-frequency modes, but decreases its upper frequency limit. The probes used 
in this study enable resolution of wave speeds in the approximate effective range of 
3-20 Hz for r = 1.55 cm, and 5-50 H z  for r = 0.55 cm. 

4. Data-analysis techniques 
4.1. Spectral analyses 

The frequency distribution, speeds and phase coherence of experimentally 
observed waves are determined by calculating the power, cross-, and bicoherence 
spectra, from the Fourier transform of the measured surface height time series. 
Fourier analysis assumes that the surface height time signal, x[t], can be functionally 
represented by 

(20) 
N 

,-1 
x[t] = (X, exp [iejt] +XT exp [ - iejt]), 

where the Fourier coefficients X, are obtained from N measured values of discretely 
sampled data points, xl, at time t,, I = 1,2, . . . ,N. For real valued functions, X ,  = X?, 
where * denotes the complex conjugate. These coefficients are used to calculate 
power, cross- and bicoherence spectra. 

The basic assumption in Fourier and spectral analyses is that the measured 
fluctuating time (or other independent variable) series represents a stationary, 
ergodic process. This is violated if strong nonlinearities are present in the system ; 
anomalous frequency components result which prevent physical interpretation and 
analysis of the data. However, because this study focuses on the weakly nonlinear 
behaviour of waves, the use of spectral analysis to determine the properties of 
measured two-dimensional wave fields should be valid. 

4.2. Power spectrum 

The spectral power density function of the surface height time series measured over 
a finite time is calculated from the fourier coefficients X,(t) by 

where f is the frequency in Hz, E is the expected value operator, and N corresponds 
to the sample size of the measured signal. By definition, the spectral density 
function, 91f3, is a real quantity, and consequently phase information contained in 
the original signal z[t] is lost in the calculation. Physically, $lf], may be interpreted 
as the frequency distribution of the variance of the signal ~ [ t ] .  The average amplitude 
of the measured waves is then related to 91f3 by 

where the above is replaced by a summation for a discrete estimate of the power 
spectrum. 
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Methods for calculating the discrete power spectrum from a finite digital signal are 
described in Bendat & Piersol (1986) and Press et al. (1986). Increments of 1024 
points, a Hanning window, and the routine ‘spectrum’ given by Press et al .  (1986) 
are used to calculate power spectra ; overlapping of windows is used for increased 
accuracy. 

4.3. Cross-spectrum and cross-coherence 

The cross-spectrum is calculated from two film height signals, z[t] and y [ t ] ,  recorded 
by probes positioned in series in the flow direction. Denoting the Fourier coefficients 
of these signals as X [  f , ]  and YW;],  respectively, the cross-spectral density is given by 

9,. [ f 5 1  = W*[fjl Y[fil l ,  j = 0,1, - . . , P. (23) 

The cross-spectral density function, $ , , [ f , ] ,  is a complex number which can be 
written in polar notation as 

0 If - tan-’ , (24a,b) 

where Qxy [ f , ]  and C,. [f , ]  denote the real and imaginary components of $xu u,], and 
Bxv measures the phase shift between z[t] and y[ t ]  at frequency f,. The time delay, rd, 
can then be calculated at  frequency f3 from 

[c,, [f,J $xu I f , ]  = ICX. GI I exp [-i0,, Ujll’ sy 31 - 

and the corresponding wave speed (units of length per time) is calculated by dividing 
r ,  the distance between probes, by rd. 

The correlation between the signals z [ t ]  and y [ t ]  is given by the cross-coherence 
coefficient, y&,, where 

The cross-coherence coefficient, y&, may assume values between zero and unity; a 
value of zero indicates that the two signals are statistically independent, while yzv 
equal to one denotes complete coherency. A relatively high correlation between 
signals (i.e. greater than about 0.85) is required for accurate measurements of the 
time delay between probes. 

Power spectral programs were modified to accommodate two time series and to 
estimate the discrete cross-spectrum as prescribed by Bendat & Piersol (1986). Data 
are segmented and windowed prior to analysis. Values of the cross-coherence are 
calculated and found to be sufficiently large (y&, > 0.9) over a frequency range 
coincident with significant values of the power spectrum. 

4.4. Bispectrum and bicoherence 

The bispectrum determines phase coherence among wave modes measured by the 
surface height time series, x[ t ] .  It is essentially a triple correlation function in the 
frequency domain that tests for phase correlation between spectral components 
satisfying the selection rule f3 = fi+fi. This third-order spectrum is defined by 

$ s x x % ~ . f z l  = ~ r ~ [ f , l ~ [ f z l ~ * W ; + z 1 1 ~  j,l = 071, ...?P. (27) 

Nonlinear interactions between waves generate spectral components which are 
necessarily phase coherent, while independently excited modes are characterized by 
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random phases. The statistical averaging denoted by the expectation operator in (27) 
results in a non-zero value only if the total phase of the three waves is correlated, i.e. 
if the waves are nonlinearly coupled. If the waves result from independently excited 
modes, the individual and sum phase of the components will be random, yielding a 
zero value for $,,, v,, f l ] .  Both sum and difference interactions are accounted for in 

The bicoherence spectrum, a bispectrum normalized to eliminate dependence on 
component amplitudes, is used to determine the extent of coupling between waves 
and is given by Kim & Powers (1979) as 

(27). 

and 

where b 2 u j ,  f l ]  is the bicoherence, and p[f,, f l ]  is the biphase, which measures the 
relative phase between components. Equation (28a) is bounded between zero and 
unity; it  takes on a value close to one when a wave a t  f ,+f l  is phase coherent with 
waves a t  f, and fl. A zero value results from an absence of coherence, or nonlinear 
interactions, among components. Because a finite-length time series is used to 
estimate the bispectrum, a non-zero value will result for even the most random 
processes. The minimum significant value of bicoherence required for 95 % confidence 
is given by Elgar & Guza (1985) as 

where M equals the number of windows used in the calculation. By definition, 
bispectral methods are capable of analysing data only for weak, quadratic nonlinear 
interactions. If the system being considered contains higher-order nonlinearities, 
then higher-order spectra must be invoked. The discrete bicoherence spectrum is 
estimated using the computational procedures prescribed by Kim & Powers (1979). 
Two-hundred and fifty overlapped windows of 256 points were found to provide 
adequate resolution, while maintaining statistical stability. 

5. Experimental results 
The surface tracing and power spectrum for a 9.5 CP liquid at R, = 70 and 

R, = 4000, (RG, the gas Reynolds number, is chosen just large enough for waves to be 
observed and measured) are shown in figure 3. The measurements were taken at a 
point 5.6 m from the inlet which is a distance sufficient for the spectrum to have 
reached a steady state. The tracing exhibits a clear dominant frequency (of - 8 Hz) 
even though there is some irregularity to the waves. It is worthwhile to note the 
slight ‘beating ’, indicative of either a second mode close to the frequency of the first 
or the presence of a low-frequency mode. Careful examination of the dominant wave 
shape reveals a slight asymmetry which is a result of the presence of an overtone 
mode that generally occurs with a fixed phase relative to the fundamental. The 
power spectrum of the tracing depicts a sharp fundamental a t  8 Hz with some energy 
in the shoulders, a broad overtone at 14-17 Hz and some evidence of a small peak a t  
less than 1 Hz. From the surface tracing, the amplitude, a, of the dominant waves 
is seen to be about 0.02cm; integration of the power spectrum between 7.0 and 
8.5 Hz (which is the sharp part of the peak) provides an estimate of the 0.023 cm for 
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FIGURE 3. Interface tracing at fetch = 5.59 m and power spectrum of waves close to neutral 
stability: R ,  = 70, R,  = 4000, Uai, = 2.9, h = 0.65 cm pL = 9.5 cP. 

the amplitude. This compares to  a wavelength of about 4.1 cm (obtained from 
measurements of the wave speed) ; this gives a / h  x 0.005. It is also interesting to  
view the spectrum plotted as log [$[f]] us. f i n  figure 4. It is clear that there is a slight 
excess of energy a t  a frequency which corresponds to the second overtone and a very 
small, but sharp, peak a t  the first subharmonic of the fundamental. The role that 
nonlinear interactions play in distributing energy in the wave spectrum is elucidated 
by the bicoherence spectrum which is shown as a contour plot in figure 5 .  The 
strongest coherence is seen to occur between the fundamental and the first overtone 
by the selection rule fi ( = - 8 Hz) +fi = fi ( = 16 Hz) where the peak in coherence 
is about 0.8 (maximum is 1.0). The phase angle measured between the fundamental 
and first overtone is - -a R. Figure 5 shows that much weaker coherence occurs 
between fi,fi and fa( = 24 Hz), fi,fi and f4( = 32 Hz) and also between the low- 
frequency peak and shoulders of the fundamental. The linear stability curve, shown 
in figure 1 ( b ) ,  indicates that frequencies near the fundamental are unstable but that 
the first overtone should be linearly stable. It seems clear that energy from the gas 
flow fed into the fundamental is transferred to  the second mode by nonlinear 
interaction between the fundamental and the first overtone. This mechanism 
provides the primary mechanism of stabilization of the spectrum. 

Figure 6, which shows the evolution of the spectrum and surface tracing with 
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FIQURE 5. Contour plot of the bicoherence spectrum for the conditions of figure 3. Strong 
coherence between the fundamental and first overtone is shown. 

distance for R, approximately half the value of figure 3, demonstrates growth and 
stabilization of the fundamental by the appearance of a small-amplitude overtone. 
The tracings reveal that the phase angle between the fundamental and overtone has 
shifted from the value in figure 3 (note the rounded crests and sharp troughs) and is 
now approximately - x .  The bicoherence spectrum initially displays coherence 
between the fundamental and first overtone. However, as distance in the downstream 
direction is increased, a strong coherence develops between the fundamental and the 
first three overtones. 



204 

0.65 

0.60 

h (cm) 0.55 

L. A .  Jurman, S. E .  Deutsch and M .  J .  McCready 

(4 
1.6 F i 

- 
fetch 1.24 m 

- 

- 

0.60 

h (cm) 0.55 

0.45 OSO - 0 0.5 1 .O 1.5 2.0 2.5 

0.65 

0.60 

h (cm) 0.55 

0.50 

0.45 L I 1 1 1 

0 0.5 1.0 1.5 2.0 2.5 
Time (s) 

FIQURE 6 (a, b) .  For caption see facing page. 



Interfacial mode interactions in gas-liquid flows 

50 

40 

f, 30- 

20 

10 

205 

- 
- 

- 

- 

( C )  

60 
fetch = 1.24 m 

0 -  - f '  ---. - "I 
0 0 

60 

50 

40 

f, 30-  

20 

10 

- 
5.59 m 

- 

- 

- 

- 

0 10 20 30 40 50 60 

2ol 10 

I 3.76 m 

0 

0 10 20 30 40 50 60 

0 10 20 30 40 50 60 

f, 

FIQURE 6. (a) Wave spectra at increasing fetch for conditions close to neutral stability. (b )  Surface 
tracings as a function of fetch. (c) Bicoherence of wave field close to neutral stability (contour lines 
represent b2 = 0.1). R,  = 35, R ,  = 4200, h = 0.55 cm, U,,, = 3.2 m/s, pL = 10 cP. 

If R, is decreased still further, we see a rather significant qualitative difference in 
wave evolution as reflected by the spectra of figure 7. A fundamental peak develops 
and grows significantly between the first and second probes. As distance increases, a 
subharmonic mode appears and, by the last probe this mode is of comparable size 
to the fundamental. It is interesting that the subharmonic formation observed on the 
present finite-depth layer (h  = 0.46 cm, fundamental wavelength z 2.3 cm) is 
qualitatively similar to the measurements obtained by Choi (1977) on a layer of 
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effectively infinite depth ( h  = 26 cm, fundamental wavelength rn 2.4 cm) so that, as 
will be discussed below, liquid depth is not the only factor determining which modes 
appear. Observation of subharmonic formation in terms of the surface tracings is 
difficult because the subharmonic mode occurs intermittently throughout the 
tracing. The development of the subharmonic differs in an important way from the 
occurrence of the overtone. While the overtone will always be present, according to 
(M), the subharmonic is expected to appear only after the fundamental has reached 
some critical amplitude. As a consequence, the subharmonic is not expected to grow 
until some finite distance downstream and is predicted to be associated with the 
largest-amplitude fundamental modes. The data are consistent with these pre- 
dictions. The bicoherence spectra, shown in figure 7 ( c ) ,  clearly demonstrate the 
immediate fundamental/first overtone coherence at short fetch, and then much 
weaker coherence between the fundamental and the subharmonic appearing at the 
second probe. By the third probe, the magnitude is somewhat decreased but there is 
still coherence between the subharmonic and the fundamental. This lowering of 
coherence may result because the subharmonic, as it grows, behaves more as a free 
mode. 
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Figure 8 shows wave data when R, is decreased still further. Behaviour similar to  
figure 7 occurs with a small subharmonic appearing by the last probe. The 
bicoherence spectra again show fundamental-overtone coherence followed by an  
emerging coherence between fi = 10 and fi = 5 Hz and also fl = 5 and fi = 5 Hz. 

Substantially different behaviour can be observed if the liquid viscosity is 
increased to  20 cP. Figure 9 shows the evolving wave spectrum for a 20 CP liquid at 
R, = 6300 and R, = 5. It is seen that the magnitude of the power spectrum changes 
little with distance but that it broadens with the appearance of new sidebands. In 
addition, the peak a t  low frequency exhibits continued growth. The bicoherence 
spectra shown in figure 9 ( c )  demonstrate that the low-frequency peak is correlated 
with sidebands of the main peak (notice the strong contours a t  fl = 13.5, fi = 1) and 
indicate that the low-frequency mode is participating in quadratic interactions 
similar to those shown above which produce subharmonics and overtones. This 
provides a way for the main peak to feed energy into low-frequency modes that are 
otherwise stable. Such energy transfer may have important implications to  the 
formation of long-wavelength disturbances which, given further growth, could 
evolve into roll waves. In  addition, the spectra at all three locations show a strong 
coherence between the fundamental and the first overtone ; energy transfer from the 
fundamental to  the first overtone is again the primary mechanism for stabilization 
of the wave field. 

It is also of interest to examine the speed of some of the disturbances. Wave speeds 
measured using the two-probe set-up with a separation distance of 1.55cm, a t  a 
location 5 m from the channel inlet, for conditions close to those of figures 3 and 8, 
are shown in figure 10. Figure lO(a) shows that the average speed of the overtone is 
only slightly higher than the fundamental ( - 34 compared to 33 cm/s). I n  figure 
10(b) the speed of the lower peak is slightly less than the fundamental. These data 
show that mode interactions occur even though the modes are not perfectly resonant. 

Figure 11 shows a comparison of the measured wave speed from figure 10 (a) with 
the prediction of the two limiting forms of linear stability theory. If the predicted 
wave speed is obtained by smoothly interpolating between the two theoretical 
curves, then linear stability theory predicts the wave speed relatively well. More 
importantly, the degree of dispersion, which is small, is likewise well predicted. Data 
sets for other conditions show similar qualitative behaviour and quantitative 
agreement with measurements. 

6. Discussion 
It is of interest to compare quantitative predictions of (4) with experiments. Using 

the interpolated linear stability of figure 1, and four modes of (4) chosen as k = 1.4, 
2.8,4.2,5.6 (the fundamental and the first three overtones), numerical integration of 
(4) using a Runge-Kutta routine gives steady amplitude values of 0.047 cm and 
0.016 cm for the fundamental and first overtone. The measured values are 0.023 cm 
and 0.003 cm as determined by integration of the spectrum of figure 3 over the ranges 
of the two peaks. While the predictions are certainly not exact the agreement can be 
viewed as quite good, considering that it represents an apriori prediction of the wave 
amplitude in a cocurrent gas-liquid flow where the gas is turbulent. It is seen from 
(12) that the amplitude of the first mode depends primarily on the + power of the 
growth rate, the mis-match parameter and nonlinear coefficients. Errors in any of 
these, because the linear and nonlinear theories are not strictly valid, could 
contribute to the discrepancy between the measurements and predictions. The 
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ability of (4) to accurately describe behaviour is expected to diminish as the liquid 
layer thickness is decreased. The interaction coefficients definitely cannot be 
described by (4) because, as showed by Jurman (1990), interaction coefficients for 
equations derived from boundary-layer equations (valid for k + 0) have both real and 
imaginary components. 

The data in figure 7 show clear evidence of subharmonic instability through the 
presence of a 5 Hz mode. The bispectral data of figure 7(c) suggest that the 
mechanisms of formation of the subharmonic may involve the mode as well as the 
fundamental. Note the presence of significant coherence between fi = 10 Hz and 
f2 = 5 Hz so that f3 = 15 Hz, the t mode. Cheng & Chang (1991) show (their equation 
(3.23)) that, at least for non-dispersive systems, when the t,  1 and 1 modes are 
involved in subharmonic generation, the criterion for instability is still qualitatively 
similar to (18) with the amplitude of the fundamental again playing a dominant role. 
Therefore, the observation that the subharmonic mode occurs intermittently in time 
is consistent with the formation criterion as the amplitude of the fundamental is not 
constant but varies (apparently) randomly. Larger amplitude fundamental waves 
are hence more likely to have a subharmonic wave associated with them. This is in 
contrast with the overtones in figures 5 and 6 which appear with every fundamental. 
This also explains the higher level of bicoherence between the fundamental and first 
overtone as opposed to the fundamental and subharmonic. The general question of 
when to expect subharmonic instability involves several competing factors ; the 
simple observation from the data above, that a subharmonic is more likely to form 
if the layer thickness is decreased, needs further scrutiny. For the data shown here, 
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the amplitude of the fundamental is 0.023 cm in figure 3,0.034 cm in figure 6,0.04 cm 
in figure 7 a t  the middle probe and 0.025cm a t  the middle probe in figure 8. 
Therefore, both the fundamental mode amplitude and an increase in the value of the 
interaction coefficient Pl,;, as the layer depth is decreased, explain the formation of 
the subharmonic. 

To demonstrate how the formation of a subharmonic would be predicted by the 
mode equations from an initially (almost) smooth interface, a calculation for the 
conditions of figure 7 was done using modes k = 1.05 (subharmonic), 2.1 (fun- 
damental), 4.2,6.3, and 8.4 which have predicted growth rates of -0.05,1.12, -0.96, 
-5.603 and - 12.02 s-l respectively. The initial evolution of the fundamental and 
subharmonic is shown in figure 12 starting with a, = 0.01 cm and a; = 0.001 cm. A 
logarithmic ordinate is used for clarity at small magnitude. It is seen that, initially, 
the fundamental grows monotonically until reaching an almost steady value (which 
would be the steady state in the absence of the k = 1.05 mode) while the subharmonic 
decays. However, once the fundamental has reached a sufficiently large amplitude, 
the subharmonic begins to grow. The equations then predict oscillations, which may 
or may not occur in the real system, before a final steady state is reached. One 
important observation is that a rather abrupt switch in the dominant wavelength 
can occur, even though the fundamental will persist after the subharmonic grows. A 
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FIGURE 8. (a) Wave spectra as a function of fetch. (b) Surface tracings as a function of fetch, 
( c )  Bicoherence of wave field close to  neutral stability (contour lines represent b2 = 0.1). R, = 5, 
R ,  = 6300, h = 0.36 cm, U,, = 4.3 m/s, pL = 10 cP. 

second point is that this transfer occurs even if the fundamental is not in resonance 
with it subharmonic. 

Figure 9 shows evidence of sideband modes which interact with a low-frequency 
peak that grows with distance. The bispectra demonstrate coherence between the 
peak Sidebands and the low-frequency mode. Because the sidebands appear to be 
more pronounced at larger distance, it would seem that the spectra are not exhibiting 
merely a transient state but that the main peak is unstable to sidebands. If the main 
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peak is assumed to  be located at the peak in the growth curve, as all of the spectra 
seem to be, then (19) does not provide any aid in predicting why the main peak is 
unstable to sidebands, as the main peak is predicted to  be stable. However, there are 
two possible explanations for this apparent discrepancy. Cheng & Chang (1990) 
mention that the analytical analysis which gives (19) is limited to the region close to  
neutral stability. It may be that R, is too large for (19) to be valid. A second 
possibility is that the Sk modes must be included in the initial description of stability. 
Because (4) are certainly not able to describe modes with such low wavenumbers, this 
possibility cannot be tested. As was mentioned above, the important implication of 
these data is that  energy is transferred from the main peak to a much longer 
wavelength disturbance a t  RG values substantially below where such waves are 
predicted to grow from linear stability theory. Under conditions where a low- 
frequency peak of finite amplitude can receive energy directly from the gas flow, the 
possibility exists for these waves to grow to significant amplitude - a t  conditions 
where they are predicted to  be linear stable ! While for the thin film of figure 9 this 
has no adverse implications for flow regime stability, the role of sideband interactions 
in initiating the formation of slugs, which are often ascribed to linearly unstable long- 
wavelength waves, deserves further study. 

It is possible to speculate about the behaviour of waves on much deeper layers in 
terms of the theory and experiments presented here. The linear growth rates 
presented by Gastel et al. (1985) are of similar magnitude to  those in figure 1. As a 
consequence, any deviation will result from different magnitudes of Li, pi and Qi. 
It is not obvious from the form of the equations, but the P, and Qi decrease as the 
depth increases; the L, are amplified with increasing depth. As a consequence, the 
steady-state amplitudes will increase as the depth is increased. This will then 
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FIQURE 9 ( b ) .  For caption see p. 214. 

enhance the possibility that a subharmonic mode will form. It is also noted that, as 
discussed by Cheng & Chang (1992), more than one subharmonic may form. 

The general implication of the data is that all of the interactions shown here, with 
the addition of the transverse instability, will be important in determining the wave 
spectrum at conditions far above neutral stability. Therefore, to accurately predict 
the wave spectrum at arbitrary conditions, theoretical procedures will need to 
include both linear growthldecay and all of the interactions observed above. 

7. Conclusions 
Measurements of interfacial waves in cocurrent flows close to neutral stability 

reveal that the primary mechanism for stabilization of the fastest growing mode is 
energy transfer to the first overtone which is linearly stable and can dissipate energy. 
This energy transfer and stabilization occurs even if the two modes are not 
‘resonant’ and can cause the fundamental to stabilize with wave slope as small as 
* 0.005. For other conditions close to neutral stability, a first subharmonic is 
observed to form and grow with distance. This apparently occurs when energy 
transfer from interaction between the subharmonic and the fundamental (and 
perhaps a t mode) is strong enough to overcome linear viscous dissipation. 
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Interactions between the sidebands of thc fundamental and small-frequency modes 
may also occur, suggesting that energy can be fed into long-wavelength waves a t  
conditions far below where they are linearly unstable. It is expected that all of these 
interactions, with the addition of transverse instability, play important roles in 
determining the behaviour of the spectrum away from neutral stability. 
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FIGURE 10. Sample dispersion curves (0) with superimposed power spectra (-). (a) R ,  = 78, 
R,  = 3640, Uair = 2.9 m/s, h = 0.68 cm ,uL = 10 cP. ( b )  R ,  = 5 ,  R,  = 6300, Ualr = 4.3 m/s, 
h = 0.36 cm, ,uL = 10 cP. 

Appendix 
Because the air/liquid density and viscosity ratios are small (they are 0.0012 and 

0.0018 for the 10 cP  liquid in this study), and in the light of the recently obtained 
good predictions of the point of neutral stability and wave amplitudes (Prokopiou 
el al. 1992), the behaviour of waves will be described by equations of motion for the 
liquid phase with the effect of the gas flow entering through boundary conditions. 

The pressure and shear stress variations will be taken as sinuous with phase and 
magnitude obtained from experiments and modelling of turbulent flow over solid 
wavy surfaces (Thorsness et al. 1978; Abrams 1984). The pressure and shear stress 
variations are denoted as 

p' =$exp[ik(z-ct)], $ = gR+&, (A l a ,  b )  
7' = +exp[ik(z-ct)], .i = .iR+i.iR, (A 1c, d )  
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FIQURE 11. Comparison of measured wave speed (0 )  with prediction of linear stability theory 

( . . . . . . , boundary layer ; -, deep layer) : R ,  = 78, R ,  = 3640, h = 0.68 em, ,uL = 10 cP. 

FIGURE 12. Spatial evolution of the fundamental (-) and subharmonic (--.--.-) as predicted 
by (4) for condition where a subharmonic is observed experimentally. Note that the subharmonic 
does not begin to  grow until the fundamental has reached a threshold amplitude which is in 
qualitative agreement with (18). 
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where p‘ is the wave-induced variation in the dynamic gas phase pressure P, and r’ 
is the wave-induced variation in the interfacial stress, 7. The boundary condition for 
interfacial stress can be written as 

i ( ; av/ awe) 
R L  ax ay T = -  Uo+-+-+r7 for y = r ,  

where u’ and v’ are the wave-induced tangential and normal velocity fluctuations and 
T,J is the surface position. The pressure boundary condition is 

where p is the pressure in the liquid phase and T~~ is the normal viscous stress. The 
kinematic condition at the interface is 

= vj. 

The flow of interest is confined to a finite-depth channel. At the bottom wall, the 
conditions on the liquid velocity are 

u’=v’=O at y = - h  (A 5 )  

A.l. Linear stability 

For the linear stability problem, all fluctuating variables (e.g. u’) will be written as 

u‘ = ziexp[ik(x-ct)], (A 6) 

where k is real and c is complex. Cohen & Hanratty (1965) provide an analytical 
solution, for the wave speed Re [c] and growth rate k Im [c] for large kRL if U;; = 0. 
These expressions are given in $2.2 as (2) and (3). A more general version of this 
solution, which contains additional powers of l/RL, is given by Hanratty (1983). 

A.2. Nonlinear evolution 
A set of quadratic evolution equations for the complex mode amplitudes A ,  can be 
derived following the multiple scale procedure of Janssen (1986) in which time and 
distance variables are expanded in powers of the wave slope. For the present analysis 
it is assumed that the pressure and shear variations caused by the gas flow are 
satisfied exactly at  linear order, so that 7’ and p‘ will not enter into the nonlinear 
problem, and that kR, is large enough that viscous effects may be neglected at second 
order in wave slope. For the derivation to be valid, it is necessary that mode 
growth/damping rates, nonlinear energy transfer and mode speed dispersion all be 
confined to the same order -which in this case is l/hkRL. Also, because the available 
linear stability was formulated temporally, the complex mode amplitudes will be 
functions of t  but not x. 

The derivation proceeds by expanding the above boundary conditions along with 
the Navier-Stokes equations. Janssen (1986) provides details of how to accomplish 
this derivation. The major differences for our case are that the modes are allowed to 
be dispersive, which leads to the Id, term in (4), and the presence of a bottom wall. 
A linear velocity profile is assumed from the outset to enable a completely analytical 
solution. This simplification is expected to cause no qualitative change in (4). 
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